Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Current transport mechanism and I-V characteristics of titanium and indium contacts to p-type GaN

Identifieur interne : 00F682 ( Main/Repository ); précédent : 00F681; suivant : 00F683

Current transport mechanism and I-V characteristics of titanium and indium contacts to p-type GaN

Auteurs : RBID : Pascal:02-0410979

Descripteurs français

English descriptors

Abstract

Several Mg-doped p-type GaN samples were grown on sapphire by horizontal MOCVD technique. Concentrations of Mg are in the 1019 cm-3 range. Free carrier concentrations are p = 2-3 × 1017 cm-3 and Hall mobility μH = 11-13 cm2 (Vs)-1. Contacts for Hall probes are standard nickel-gold contacts. On such samples the titanium contacts were evaporated and the indium contacts were soldered. We study current transport for various combinations of metal contacts. Measured current voltage curves (I-V) show similar characteristics for various combinations of metals being dependent more on sample then on the choice of metal. The I-V characteristics showed symmetrical s'-shape, identical in forward and reverse direction. Several expressions are considered in attempt to explain such behavior. It is concluded that the tunneling is dominant current transport process. It is expected that the surface layer properties are critical for the formation of ohmic contacts and the choice of metal is less important.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0410979

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Current transport mechanism and I-V characteristics of titanium and indium contacts to p-type GaN</title>
<author>
<name sortKey="Santic, B" uniqKey="Santic B">B. Santic</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Ruder Bošković Institute, Bijenička 54, P. O. Box 1016</s1>
<s2>10000 Zagreb</s2>
<s3>HRV</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Croatie</country>
<wicri:noRegion>10000 Zagreb</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dornen, A" uniqKey="Dornen A">A. Dörnen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>4. Physikalishes Institut, Universität Stuttgart, Pfaffenwaldring 57</s1>
<s2>70550 Stuttgart</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>70550 Stuttgart</wicri:noRegion>
<wicri:noRegion>Pfaffenwaldring 57</wicri:noRegion>
<wicri:noRegion>70550 Stuttgart</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0410979</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0410979 INIST</idno>
<idno type="RBID">Pascal:02-0410979</idno>
<idno type="wicri:Area/Main/Corpus">00EC28</idno>
<idno type="wicri:Area/Main/Repository">00F682</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-5107</idno>
<title level="j" type="abbreviated">Mater. sci. eng., B, Solid-state mater. adv. technol.</title>
<title level="j" type="main">Materials science & engineering. B, Solid-state materials for advanced technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binary compounds</term>
<term>Carrier density</term>
<term>Doping</term>
<term>Free carrier</term>
<term>Gallium nitrides</term>
<term>Hall mobility</term>
<term>IV characteristic</term>
<term>Impurities</term>
<term>MOCVD</term>
<term>Magnesium additions</term>
<term>Ohmic contacts</term>
<term>S shape</term>
<term>Semiconductor materials</term>
<term>Surface layers</term>
<term>Transport processes</term>
<term>Tunnel effect</term>
<term>p-type conductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Caractéristique courant tension</term>
<term>Semiconducteur type p</term>
<term>Méthode MOCVD</term>
<term>Densité porteur charge</term>
<term>Porteur libre</term>
<term>Mobilité Hall</term>
<term>Phénomène transport</term>
<term>Effet tunnel</term>
<term>Forme en S</term>
<term>Contact ohmique</term>
<term>Couche superficielle</term>
<term>Gallium nitrure</term>
<term>Composé binaire</term>
<term>Semiconducteur</term>
<term>Addition magnésium</term>
<term>Dopage</term>
<term>Impureté</term>
<term>GaN</term>
<term>Ga N</term>
<term>GaN:Mg</term>
<term>8115G</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Several Mg-doped p-type GaN samples were grown on sapphire by horizontal MOCVD technique. Concentrations of Mg are in the 10
<sup>19</sup>
cm
<sup>-3</sup>
range. Free carrier concentrations are p = 2-3 × 10
<sup>17</sup>
cm
<sup>-3</sup>
and Hall mobility μ
<sub>H</sub>
= 11-13 cm
<sup>2</sup>
(Vs)
<sup>-1</sup>
. Contacts for Hall probes are standard nickel-gold contacts. On such samples the titanium contacts were evaporated and the indium contacts were soldered. We study current transport for various combinations of metal contacts. Measured current voltage curves (I-V) show similar characteristics for various combinations of metals being dependent more on sample then on the choice of metal. The I-V characteristics showed symmetrical s'-shape, identical in forward and reverse direction. Several expressions are considered in attempt to explain such behavior. It is concluded that the tunneling is dominant current transport process. It is expected that the surface layer properties are critical for the formation of ohmic contacts and the choice of metal is less important.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-5107</s0>
</fA01>
<fA03 i2="1">
<s0>Mater. sci. eng., B, Solid-state mater. adv. technol.</s0>
</fA03>
<fA05>
<s2>93</s2>
</fA05>
<fA06>
<s2>1-3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Current transport mechanism and I-V characteristics of titanium and indium contacts to p-type GaN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SANTIC (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DÖRNEN (A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Ruder Bošković Institute, Bijenička 54, P. O. Box 1016</s1>
<s2>10000 Zagreb</s2>
<s3>HRV</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>4. Physikalishes Institut, Universität Stuttgart, Pfaffenwaldring 57</s1>
<s2>70550 Stuttgart</s2>
<s3>DEU</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>202-206</s1>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>12899B</s2>
<s5>354000108222870420</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0410979</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Materials science & engineering. B, Solid-state materials for advanced technology</s0>
</fA64>
<fA66 i1="01">
<s0>CHE</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Several Mg-doped p-type GaN samples were grown on sapphire by horizontal MOCVD technique. Concentrations of Mg are in the 10
<sup>19</sup>
cm
<sup>-3</sup>
range. Free carrier concentrations are p = 2-3 × 10
<sup>17</sup>
cm
<sup>-3</sup>
and Hall mobility μ
<sub>H</sub>
= 11-13 cm
<sup>2</sup>
(Vs)
<sup>-1</sup>
. Contacts for Hall probes are standard nickel-gold contacts. On such samples the titanium contacts were evaporated and the indium contacts were soldered. We study current transport for various combinations of metal contacts. Measured current voltage curves (I-V) show similar characteristics for various combinations of metals being dependent more on sample then on the choice of metal. The I-V characteristics showed symmetrical s'-shape, identical in forward and reverse direction. Several expressions are considered in attempt to explain such behavior. It is concluded that the tunneling is dominant current transport process. It is expected that the surface layer properties are critical for the formation of ohmic contacts and the choice of metal is less important.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Caractéristique courant tension</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>IV characteristic</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Semiconducteur type p</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>p-type conductors</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Porteur libre</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Free carrier</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Portador libre</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Mobilité Hall</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Hall mobility</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Phénomène transport</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Transport processes</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Forme en S</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>S shape</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Forma de una S</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Contact ohmique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ohmic contacts</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Couche superficielle</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Surface layers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium nitrure</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium nitrides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Addition magnésium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Magnesium additions</s0>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Doping</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Doping</s0>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>20</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>20</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Ga N</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>GaN:Mg</s0>
<s4>INC</s4>
<s5>54</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC07 i1="01" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>48</s5>
</fC07>
<fC07 i1="01" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>48</s5>
</fC07>
<fN21>
<s1>238</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00F682 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00F682 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0410979
   |texte=   Current transport mechanism and I-V characteristics of titanium and indium contacts to p-type GaN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024